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BACKGROUND: School classrooms, where students spend the majority of their time during the day, are the second most important indoor microenvir-
onment for children.

OBJECTIVE: We investigated factors influencing classroom exposures to fine particulate matter (PM2:5), black carbon (BC), and nitrogen dioxide
(NO2) in urban schools in the northeast United States.

METHODS: Over the period of 10 y (2008–2013; 2015–2019) measurements were conducted in 309 classrooms of 74 inner-city schools during fall,
winter, and spring of the academic period. The data were analyzed using adaptive mixed-effects least absolute shrinkage and selection operator
(LASSO) regression models. The LASSO variables included meteorological-, school-, and classroom-based covariates.

RESULTS: LASSO identified 10, 10, and 11 significant factors (p<0:05) that were associated with indoor PM2:5, BC, and NO2 exposures, respec-
tively. The overall variability explained by these models was R2 = 0:679, 0.687, and 0.621 for PM2:5, BC, and NO2, respectively. Of the model’s
explained variability, outdoor air pollution was the most important predictor, accounting for 53.9%, 63.4%, and 34.1% of the indoor PM2:5, BC, and
NO2 concentrations. School-based predictors included furnace servicing, presence of a basement, annual income, building type, building year of con-
struction, number of classrooms, number of students, and type of ventilation that, in combination, explained 18.6%, 26.1%, and 34.2% of PM2:5, BC,
and NO2 levels, whereas classroom-based predictors included classroom floor level, classroom proximity to cafeteria, number of windows, frequency
of cleaning, and windows facing the bus area and jointly explained 24.0%, 4.2%, and 29.3% of PM2:5, BC, and NO2 concentrations, respectively.
DISCUSSION: The adaptive LASSO technique identified significant regional-, school-, and classroom-based factors influencing classroom air pollutant
levels and provided robust estimates that could potentially inform targeted interventions aiming at improving children’s health and well-being during
their early years of development. https://doi.org/10.1289/EHP10007

Introduction
According to theWorld Health Organization (WHO), >90% of the
world’s children <15 years of age are exposed to ambient fine par-
ticulate matter [PM with an aerodynamic diameter of ≤2:5 lm
(PM2:5)] levels above WHO air quality guidelines (WHO 2018).
Exposure to air pollution is a function of the amount of time and
the frequency in each microenvironment, the concentration of the
air pollutants in that specific microenvironment, and the activity-
based uptake (inhalation dose) of each individual (Cepeda et al.
2017). School-age children are highly vulnerable to adverse health
effects from exposure to air pollution because they are very active
and breathe in more air (per body weight) than adults and because

their respiratory and many other systems are still developing
(Rückerl et al. 2011; Hoek et al. 2013). Exposure to particles with
an aerodynamic diameter of ≤10 lm (PM10) and 2:5 lm (PM2:5)
is associated with long-term deficits in lung function development
(Gauderman et al. 2004), whereas exposure to nitrogen dioxide
(NO2) is associated with increases in airway inflammation, asthma
exacerbations, and airflow obstruction (Takenoue et al. 2012;
Orellano et al. 2017; Gaffin et al. 2018). Even at ambient pollutant
levels below WHO guidelines, higher ambient air pollution expo-
sures in children have been linked to increased asthma (Rice et al.
2018) and reduced lung function (Rice et al. 2016), whereas
improvements in long-term childhood ambient pollution exposures
have been associated with improvements in respiratory health
(Urman et al. 2020; Garcia et al. 2021).

PM2:5 has various sources, both anthropogenic and natural,
whereas black carbon (BC) is part of PM2:5 and is mainly formed
by incomplete combustion of fossil fuels, wood, and other fuels
(WHO 2021). NO2 is a gaseous pollutant and forms when fossil
fuels such as coal, oil, gas, or diesel are burned at high tempera-
tures. Indoors, PM2:5, BC, and NO2 vary by location, time, and
type of sources, having both common and unique sources. Primary
schools are the second most important indoor microenvironment
(other than the home) for children who typically spend >6 h=d in
the school environment andmay be exposed to elevated concentra-
tions of PM2:5, BC, and NO2 (Carrion-Matta et al. 2019). Daily
NO2 levels measured inside schools around the globe may vary by
a factor of 23, ranging from 6 to 68:5 lg=m3 (Branco et al. 2015;
Salonen et al. 2019), whereas PM2:5 concentrations may fluctuate
between 2:3 and 129 lg=m3 (Carrion-Matta et al. 2019), indicating
situations whereU.S. Environmental ProtectionAgency andWHO
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ambient air quality guidelines are exceeded. Moreover, even
indoor air pollution levels below these levels may affect child
health. (Gaffin et al. 2018) found that mean weekly indoor school
NO2 levels >8 ppb were associated with airflow obstruction in
asthmatic children from urban schools in a northeastern U.S. city.
Therefore, it is critical to understand the sources and factors con-
tributing to these substantial variations. Important potential sour-
ces of indoor PM2:5, BC, and NO2 include outdoor air pollution,
smoking, gas stoves, heating, cleaning, dampness, mildew, mois-
ture from water damage, pest infestation, and proximity to major
roadways and industrial activities (Butz et al. 2011; Hansel et al.
2008; Matsui et al. 2007; Vette et al. 2013; Carrion-Matta et al.
2019). Factors related to the school environment that play an im-
portant role in exposure include temperature, relative humidity,
and ventilation (Stabile et al. 2019; Reche et al. 2014;Weichenthal
et al. 2008), building age and type (Che et al. 2021), occupancy
level (Branco et al. 2019), and floor covering (Fromme et al. 2007).
Given the limited number of samples and parameters examined,
the contributions of sources, environmental factors and building
characteristics that affect school- and classroom-based exposures
have not been comprehensively addressed in the literature. Cooper
et al. (2020) in their recent review and meta-analysis report that
previous studies showed “lack of robust statistical analyses and
inconsistent application of methodological approaches which led
to considerable variation in results and weak evidence of signifi-
cant and consistent associations between seasonal, meteorological,
activity-based, site-based and ventilation rate variables with indoor
PM2:5 concentrations inside schools.”

Aiming at closing some of these gaps and also identifying key
controllable exposure aspects for managing schoolchildren’s ex-
posure to air pollutants, in the present study, we report indoor
concentrations of PM2:5, BC, and NO2 from the School Inner
City Asthma Study (SICAS) I and II and assess outdoor and
indoor factors influencing classroom levels. We used an adaptive
least absolute shrinkage and selection operator (LASSO) mixed-
effects regression approach to identify key environmental-,
school-, and classroom-related factors affecting children’s expo-
sure, and we quantified the joint and individual contributions of
these factors to provide implications for school indoor air quality.

Methods

Study Design
The SICAS1 and SICAS2 investigated the association of school-
and classroom-based environmental exposures on students with
asthma in a northeastern U.S. city. SICAS1 study spanned 6 y
(2008–2013) and included classroom exposure assessment twice
per year (fall and winter or spring), whereas SICAS2 data spanned
5 y (2015–2019) and included baseline exposures during fall
(October–November). SICAS1 was a 5-y prospective study evalu-
ating the effects of school classrooms air quality on asthmamorbid-
ity for children with asthma attending urban public schools in low-
income communities, whereas SICAS2 study was a factorial,
randomized, placebo-controlled clinical trial conducted at 41 urban
elementary schools designed to assess the efficacy of classroom air
filtration in improving asthma control in children with active
asthma. The rationale of SICAS1 and SICAS2 is described in detail
elsewhere (Phipatanakul et al. 2011, 2017). Briefly, the enrolled
subject’s school classroom was assessed twice per year (fall and
spring) for allergen, mold, and endotoxin levels. Indoor levels of
PM2:5, BC, and NO2 were measured in a subset of these subjects’
classrooms. At the beginning of the school year, research assistants
also completed a school evaluation checklist, including ascertain-
ment of the presence and use of gas stoves or electric kitchen
stoves. Per confidentiality agreements, the locations of the schools

may not be disclosed. Written parental informed consent and stu-
dent assent were obtained in English or Spanish. The study proto-
col was approved by the Boston Children’s Hospital institutional
review board and by the principals at the participating schools.
Information about the school, classroom characteristics, and the
number of occupants were collected via a combination of ques-
tionnaires, inspection, and interviews with the staff. Survey data
were ascertained in person or by telephone by staff, and the
response numbers (per year) depended upon the number of stu-
dents enrolled from each school. Students who fulfilled the inclu-
sion criteria were eligible for the trial, randomization of their
classrooms and schools, and measurement of indoor air pollution
exposures. Inspections in the schools and classrooms were con-
ducted by SICAS staff before eachmeasurement campaign (twice
for SICAS1 and once for SICAS2). Occupancy periods varied
between different studied classrooms, varying not only due to the
children being in preschool or high school but also on each school
organization. Starting and ending times varied between 0715–
0930 and 1400–1610 hours, respectively, which are typical time-
tables for education in the United States.

Instrumentation and Data Collection
Weeklong indoor PM2:5, BC, and NO2 measurements were con-
ducted in inner-city school classrooms during weekdays, incorpo-
rating both occupied and nonoccupied periods. PM2:5 samples
were collected using a personal exposure monitor (PEM) in school
classrooms in one or two seasons during the academic school years
between 2008 and 2013 for SICAS1 and during one season, fall or
winter, for SICAS2 between 2015 and 2019. PEM includes an iner-
tial impactor designed specifically for personal or indoor sampling
(Demokritou et al. 2001). Personal PM2:5 samples were collected
on Teflon filters at a flow rate of 1:8 L=min for SICAS1. For
SICAS2, a cascade impactor (Demokritou et al. 2002) with a col-
lection rate of 5L=min was used. A total of 518 indoor PM2:5 sam-
ples were collected during the study period corresponding to 309
classrooms of 74 schools. PM2:5 mass were measured gravimetri-
cally where, Teflon filters, including blanks, were weighed pre- and
postmeasurement with an electronic microbalance (MT-5 Mettler
Toledo) and conditioned for a 48-h period in a controlled tempera-
ture (22± 1:5�C) and relative humidity (40± 5%) room. Following
the postmeasurement weighing, the indoor filters were also meas-
ured for BC concentrations using a Smokestain Reflectometer
(Model EELM43D, Diffusion Systems Ltd.). Indoor NO2 was col-
lected in passive Ogawa samplers (weekday periods), and the levels
were quantified by ion chromatography. Concurrent daily outdoor
PM2:5, BC, and NO2 concentrations were also measured at a central
monitoring supersite. PM2:5 samples were collected using aHarvard
Impactor (Koutrakis et al. 1993), BC concentrations were measured
using a single (k=880 nm) channel aethalometer (model AE-16,
Magee Scientific), and NO2 was measured with chemiluminescent
analyzers. Indoor and outdoor samples were compared bymatching
the weekly indoor samples to the corresponding outdoor samples.
The supersite was located within 12 km of the schools (range:
1,065–11,592 m), with a median distance between the central
supersite and schools of 4,974 m. Although the central site was part
of the urban agglomeration, it was located 20 m above ground level
and was considered a suitable urban background station for the area
(Gaffin et al. 2017).

Statistical Analysis
To identify predictive variables for classroom exposures to
PM2:5, BC, and NO2, we applied a mixed-effects model with the
LASSO variable selection process (Tibshirani 1996; Zou 2006),
a technique often used for drug identification in cancer treatments
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(Geeleher et al. 2014). In the models, we controlled for continu-
ous variables of outdoor PM2:5, BC, and NO2, temperature (T),
wind speed (ws), seasonality [cosd= cos ð2× p×d=365Þ] and
floor level of classroom (four levels; Table 1) because these vari-
ables have been reported as important indoor exposure predictors
(Habre et al. 2014; Gaffin et al. 2017; Huang et al. 2018). These
covariates were included in the models and their fixed effects
were estimated with no penalization.

Identifying important predictors from a large list of variables is
challenging because methods such as stepwise regression ignore
stochastic errors in the stages of variable selection and can result in
false confidence intervals (Fan and Li 2001; Harrell 2001). The
adaptive LASSO method can overcome these limitations because
it applies a tuning parameter to penalize variables from the full list
of variables in the model. Here, the adaptive LASSO was applied
to select important determinants that may be associated with expo-
sure to PM2:5, BC, and NO2 in inner-city schools. The LASSO is a
regression shrinkage and variable selection approach that applies a
penalty to the absolute size of the regression coefficients based on
the value of a tuning parameter being less than a given value
(Tibshirani 1996). The adaptive LASSO is a later version of the
LASSO, which uses weights for penalizing different coefficients
(Fan and Li 2001; Zou 2006). Because schools had repeated meas-
urements, and to account for the spatiotemporal variations between
each school and the central supersite, we fit linear mixed-effects
models with random school-specific slopes and intercepts to cap-
ture the correlation among different measurements within the same
school, as follows:

Yij =Xija+ Zijb+ lij + uij + eij,

where Yij is the log of indoor exposure of PM2:5, BC, and NO2 in
classroom i and school j; Xi = ðXi1,Xi2,XiPÞT is a vector of outdoor
PM2:5, BC, andNO2 levels and other covariates; Zi = ðZi1,Zi2,ZiPÞT
is a vector of school and classroom characteristics; li is the random
intercept; ui is the random slope; and ei is the error. Hence, a indi-
cates thefixed effects of outdoor PM2:5, BC,NO2, and other covari-
ates Xi; and b is the penalized effects of school/classroom
characteristics Zi that are given by the adaptive LASSO.

To obtain nonzero coefficients (blme) for each variable in
LASSO, we applied an ordinary linear mixed-effects (OLME)
model and computed the adaptive weight (w) as its inverse
(w= 1=blme). This approach gives less weight in the penalty to var-
iables whose coefficients are large because they have increased
likelihood of being predictors (Dai et al. 2016). In the adaptive
LASSO, a nonnegative penalty parameter, k, determines how
strongly the regression coefficients are being constrained. A small
k value means that there is no shrinkage, and the regression coeffi-
cients are weakly penalized and reflect those in a regular linear
mixed-effects regressionmodel. A large k valuemeans that there is
maximum shrinkage, resulting in a model that includes fixed cova-
riates only. A k with in-between values means that the model is a
penalized model and that some coefficients are 0, whereas the
remaining nonzero coefficients are selected by the adaptive
LASSO. In this way, the method chooses variables from school
characteristics that may be associated with indoor exposure. Cross-
validation (CV) was used to identify the tuning parameter k and in
turn identify statistically predictive variables for indoor exposure
related to PM2:5, BC, and NO2. Last, we used the mixed-effects
model with fixed covariates and LASSO-selected variables only to
obtain the estimated indoor exposure relationships.

The collinearity among predictors in the multiple linear regres-
sion models was examined using variance inflation factors (VIFs),
which measure how much the variance of an estimated regression
coefficient is increased due to collinearity. Predictors with VIF

values >10, are signs of multicollinearity (O’brien 2007). A condi-
tional R2 was applied to investigate the proportion of total variance
explained through both fixed and random effects (Nakagawa and
Schielzeth 2013), whereas a partial R2 was used to provide insight
into the proportion of variation that can be explained by the explan-
atory variables. In the models, the continuous variables we
included were temperature, wind speed, seasonality, indoor and
outdoor pollutant concentrations, whereas all the other variables
were categorical. Table 1 summarizes the variables in the models.
In the models, “attached schools” were defined as those that had

Table 1. Inner-city school (n=74)- and classroom (n=309)-based charac-
teristics [n (%)].

Characteristics Categories Schools Classrooms

Building type Attached 13 (17.6) —
Detached 61 (82.4) —

Built year Prior to 1950 48 (65) —
After 1950 26 (35) —

Ventilation Natural 38 (51.4) 100 (47.8)
Mixed 18 (24.3) 26 (12.4)
Mechanical 12 (16.2) 35 (16.7)

Annual income >$45,000 35 (47.3) —
≤$45,000 39 (52.7) —

Classroom regular cleaning Yes — 62 (20.0)
Classroom floor level Ground level — 15 (4.8)

1st — 99 (32.0)
2nd — 145 (46.9)
3rd — 50 (16.18)

Number of classrooms >30 32 (43.2) —
≤30 42 (56.8) —

Basement Yes 48 (64.9) —
No 25 (33.7) —

Classroom AC Yes — 70 (22.6)
No — 239 (77.3)

Classroom near cafeteria Yes — 58 (18.8)
No — 251 (81.2)

Signs of mildew Ceiling — 28 (9)
Walls — 8 (2.5)
Windows — 12 (3.8)

Moisture leaks Yes — 61 (19.7)
No — 248 (80.3)

Floor material Carpet — 97 (31.4)
Rug — 182 (58.9)
>1 — 71 (35.5)
Tile — 161 (52.1)
Wood — 121 (39.2)

Floor rating Poor — 100 (32.4)
Fair — 68 (22.0)
Intact — 132 (42.7)

Windows’ rating Poor — 96 (31.1)
Fair — 76 (36.4)
Intact — 133 (63.6)

Walls’ rating Poor — 95 (30.7)
Fair — 109 (35.2)
Intact — 112 (36.2)

Walls’ paint Poor — 90 (29.1)
Fair — 130 (42.1)
Intact — 96 (31.1)

Windows’ paint Poor — 99 (32.0)
Fair — 60 (19.4)
Intact — 131 (42.4)

Musty Yes — 25 (8)
No — 283 (91.5)

Windows (n) ≥5 — 179 (57.9)
<5 — 130 (42.1)

Windows location Bus area — 98 (31.7)
Furnace age ≤20 y 13 (17.6) —

>20 y 32 (43.2) —
Furnace last serviced ≤1 y 41 (55.4) —

>1 y 20 (27) —
Use of gas stoves for cooking Yes 8 (10.8) —

No 66 (89.2) —
Note: —, not applicable; AC, air conditioning.
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one or more buildings touching or that were part of a group of
buildings, and “detached schools” were defined as those that had
buildings that were not touching any other buildings. Annual
incomewas calculated for schools; if most of the school population
had a household income >$45,000, it was defined as “low middle-
class income” (Kochhar 2018).

To determine the indoor PM2:5 of outdoor origin, we used the
sulfur ratio approach (Sarnat et al. 2002). This assumes that when
there are no indoor sources of sulfur, the indoor penetration of
PM2:5 emitted from outdoor sources can be approximated by the
indoor to outdoor (sulfurindoor=sulfuroutdoor) ratio (Long and
Sarnat 2004). This is based on the assumption that sulfur origin is
from long-range transport, hence the measurements from the out-
door central supersite can be representative of the whole region
(Huang et al. 2018; Matthaios et al. 2021). The sulfur ratio was

calculated for each school classroom and classroom sampling pe-
riod, and it was then multiplied by the outdoor concentration to
approximate the infiltration fraction and the fraction of indoor
PM2:5 that come from outdoor sources (Habre et al. 2014). To
reflect this process in our modeling approach, we included ran-
dom slopes and intercepts, taking into account the spatiotemporal
variation between the central supersite and each school.

Results

School Characteristics
Characteristics of the studied microenvironments are listed in
Table 1. Briefly, the schools varied widely in age (built between
1899 and 2002, with many built before the 1950s) and in the

Figure 1. Distribution of (A) PM2:5, (B) BC, and (C) NO2 concentrations by school (n=74). The numbers on the x-axis represent each school. Box and
whiskers plots represent the distribution of PM2:5, BC, and NO2 across multiple classrooms within each school. Box parameters are the interquartile range
(IQR), the hash mark is the median, and whiskers extend to 1.5 times the IQR above the 75th and below the 25th percentiles. For full descriptive statistics for
each school, see Table S1. Note: BC, black carbon; NO2, nitrogen dioxide; PM2:5, PM with an aerodynamic diameter of ≤2:5 lm (fine particulate matter).
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type of ventilation (natural, mechanical, and mixed). The mean
occupant density in classrooms was 8 children=100m2 (range:
4–20 children=100m2), which is in compliance with the American
Society of Heating, Refrigerating and Air-Conditioning Engineers
(ASHRAE) guidelines for school facilities (i.e., 25 occupants=100m2)
(ASHRAE 2007).

Classroom levels of PM2:5, BC, and NO2

The mean ± standard deviation ðSDÞ levels of PM2:5, BC, and NO2
were 5:7±1:4lg=m3, 0:6± 0:16lg=m3 and 11:5± 1:8 ppb, with
the respective ranges of 0:13–27 lg=m3, 0:09–0:99 lg=m3, and
2:3–29:7 ppb. The median concentration levels were 5:4lg=m3

(PM2:5), 0:56 lg=m3 (BC), and 10:9 ppb (NO2). Figure 1 shows the
school-based exposure variability of PM2:5, BC, and NO2 across the
74 schools during 2008–2013 and 2015–2019, and the full descrip-
tive statistics are listed in Table S1. PM2:5, BC, and NO2 exposures
during winter period were significantly (p<0:05) greater from those
measured during fall and spring. Figure 2 shows the seasonal varia-
tion of indoor PM2:5, BC, and NO2 during the 10-y measurement
period (see Table S2 for descriptive statistics). In general, levels of
PM2:5 and NO2 were low; however, we observed 20 classrooms in

10 schools with PM2:5 >12 lg=m3, all associated with classrooms
that had more than six windows facing toward the bus drop-off and
pick-up area.

Factors Affecting Indoor Exposure
Table 2 shows the results of the adaptive LASSO mixed-effects
model. Using cross-validation we selected the lambda for PM2:5,
BC, and NO2 models. For PM2:5, BC, and NO2, the minimum
mean square error in cross-validation comes when log ðkÞ= − 4,
−2:2, and 5, whereas 1 standard error (SE) has a log ðkÞ=2:1,
3.6, and 8.8, respectively. Generally, the purpose of regulariza-
tion is to balance accuracy and simplicity, meaning a model with
the smallest number of predictors that also gives a good accuracy.
To this end, we selected the value of lambda that gave the sim-
plest model while also lying within 1 SE. Figures S1–S3 show
that the model predicts well each pollutant when log ðkÞ=2:1,
3.6, and 8.8 and that the model within 1 SE at 6, 6, and 7 varia-
bles of the total 67 was also a good choice for each pollutant
respectively. From the LASSO predictors listed in Table 2, it is
evident that indoor exposure to all three examined pollutants was

Figure 2. Within-school (n=74) concentrations of (A) PM2:5, (B) BC, and (C) NO2, during spring (MAM: March, April, May), fall (SON: September,
October, November) and winter (DJF: December, January, February). Box parameters are the interquartile range (IQR), the hash mark is the median, and
whiskers extend to 1.5 times the IQR above the 75th and below the 25th percentiles. For full descriptive statistics, see Table S2. Note: BC, black carbon; NO2,
nitrogen dioxide; PM2:5, PM with an aerodynamic diameter of ≤2:5 lm (fine particulate matter).
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found to be associated with different characteristics related to
school, classroom, and outdoor conditions.

Overall, the PM2:5 LASSO mixed-effects model explained
67.9% of classroomPM2:5 variability, suggesting that the selected pa-
rameters reflected the key processes affecting indoor PM concentra-
tions. Classroom PM2:5 exposures were significantly (p<0:05)
positively associatedwith outdoor PM2:5 levels and ambient tempera-
ture (p<0:1) and significantly inversely associated with wind speed.
From the final PM2:5 LASSO mixed-effects model, the outdoor
PM2:5 concentrationwas by far the largest andmost important predic-
tor and explained 53.9% of the variability, whereas the ambient mete-
orological parameters explained an additional 3.5%. Furthermore,
indoor PM2:5 concentrations were significantly (p<0:05) positively
associated with schools that had natural ventilation, whereas school
year of construction and annual income of >$45,000 were negatively
associated with indoor PM2:5 levels. These school building,
envelope-related, and disparity characteristics together explained
15.2% of the PM2:5 variance. Classrooms with more windows and
those close to the school’s cafeteriawere significantly (p<0:05) posi-
tively associated with indoor PM2:5 exposure and combined
accounted for 9.3% of PM2:5 variability. Classrooms with windows
facing the bus area were significantly positively associated with
indoor PM2:5 concentrations and explained 6.8% of the PM2:5 indoor
exposures, whereas classrooms located at greater levels were signifi-
cantly negatively associated with indoor PM2:5 exposures. In the
PM2:5 model, environmental factors were the most important predic-
tors, explaining 57.4% of the classroom PM2:5 exposures. School-
originated predictors explained 18.6%, whereas classroom-based fac-
tors accounted for 24.0%of the PM2:5 variance.

The LASSO mixed-effects model for BC exposure explained
68.7% of BC variability, indicating that it captured the key factors
and sources affecting classroom BC levels. Indoor BC levels
were significantly (p<0:05) positively associated with outdoor
BC concentrations and negatively associated with ambient tem-
perature (p<0:1), seasonality, and wind speed. Outdoor BC
explained 63.4% of the BC LASSO mixed-effects model varia-
tion, whereas ambient temperature, seasonality, and wind speed
combined accounted for 8.9%. Regarding school characteristics,
BC was significantly positively associated with attached

buildings (p<0:1), the presence of a basement and time since
furnace servicing (p<0:05). Furnace servicing presented a con-
siderable indoor predictor, accounting for 19.0%, whereas the
remaining school-related factors explained 4.3% of indoor BC
levels. Classroom floor level, despite being added into the model
without penalization, did not associate with indoor BC levels.
Classrooms that were not cleaned regularly and those with win-
dows facing the bus drop-off and pick-up area, together account-
ing for ∼ 4% of the BC variability, were significantly positively
associated (p<0:05) with BC levels. In the LASSO mixed-
effects model, outdoor factors were the most important ones and
combined explained 72.3% of indoor BC exposures, whereas
school- and classroom-based related factors explained the
remaining 26.1% and 4.2% of indoor BC levels, respectively.

The LASSO mixed-effects model for NO2 explained 62.1% of
classroom exposure variability and had both unique and similar
predictors to PM2:5 and BC LASSO mixed models. Outdoor con-
centration, which was a significant and common predictor in all the
models, was positively associated with indoor NO2 and explained
34.1% of themodel’s variability, whereas ambient temperature and
wind speed (also predictors for PM2:5 and BC) were negatively
associated (p<0:1), with indoorNO2, accounting for another 1.0%
and 1.5%, respectively. School factors, such as a greater number of
classrooms and a greater number of students, were unique for the
NO2 model and were significantly positively associated with NO2
concentrations. Income >45K, as in the PM2:5 model, was signifi-
cantly negatively associated with NO2 levels, whereas attached
buildings (contrary to the BC model) were negatively associated
with NO2 exposure. School-related characteristics combined
accounted for 34.2% of the NO2 variability. Classrooms with more
windows or windows facing the bus area were positively associ-
ated with NO2 exposures, whereas classrooms located at higher
levels, were negatively associated with indoor NO2 exposures.
Number of classroom windows and location window, which was
an important and common predictor for all models, combined
accounted of 26.2% of the variability, whereas classrooms located
at greater levels accounted for 3.1% of indoor exposure variation,
respectively. Within-school NO2 exposure was influenced almost
equally by environmental-, school- and classroom-based factors,

Table 2. Determinants of classroom PM2:5, BC, and NO2 levels in schools (n=74) and classrooms (n=309), as reported by the adaptive LASSO mixed-effects
model.

Influencing factor

PM2:5 model (N =388) BC model (N =396) NO2 model (N =362)

Coef ±SE p-Value VIF RI Coef ±SE p-Value VIF RI Coef ±SE p-Value VIF RI

Outdoor origin factors
Outdoor concentration 0.39 ± 0:031 <0:01 1.74 53.9 0.54 ± 0:025 <0:01 1.25 63.4 0.36 ± 0:042 <0:01 1.44 34.1
Ambient temperature 0.02 ± 0:042 0.054 1.48 1.3 −0:04 ± 0:042 0.058 1.83 3.1 −0:02 ± 0:042 0.09 1.48 1.0
Seasonality — — — — −0:05 ± 0:018 <0:01 1.27 1.7 — — — —
Wind speed −0:03 ± 0:014 0.018 1.65 2.2 −0:07 ± 0:017 <0:01 1.22 4.1 −0:03 ± 0:015 0.062 1.40 1.5
School origin factors
Furnace last serviced — — — — 0.05 ± 0:006 <0:01 1.10 19.0 — — — —
Presence of a basement — — — — 0.08 ± 0:022 <0:01 1.08 3.6 — — — —
Annual income (>45k) −0:06 ± 0:024 <0:01 1.15 2.8 — — — — −0:11 ± 0:029 <0:01 1.20 8.1
Building type — — — — 0.07 ± 0:041 0.069 1.16 0.7 −0:08 ± 0:035 0.021 1.63 2.5
Year of construction −0:07 ± 0:012 <0:01 1.15 12.4 — — — — — — — —
Classrooms (n) — — — — — — — — 0.05 ± 0:014 <0:01 1.67 8.1
Students (n) — — — — — — — — 0.06 ± 0:021 <0:01 1.46 5.3
Type of ventilation 0.01 ± 0:003 <0:01 1.13 3.4 — — — — 0.02 ± 0:004 <0:01 1.46 10.2
Classroom origin factors
Floor level −0:06 ± 0:014 <0:01 1.25 7.9 — — — — −0:03 ± 0:015 0.023 1.13 3.1
Proximity to cafeteria 0.10 ± 0:035 <0:01 1.20 3.4 — — — — — — — —
Windows (n) 0.01 ± 0:004 <0:01 1.26 5.9 — — — — 0.02 ± 0:003 <0:01 1.30 14.9
Cleaning frequency — — — — 0.13 ± 0:038 <0:01 1.12 2.8 — — — —
Windows facing bus area 0.09 ± 0:024 <0:01 1.16 6.8 0.08 ± 0:036 0.027 1.14 1.4 0.15 ± 0:028 <0:01 1.19 11.3

Note: —, not applicable; BC, black carbon; coef, coefficient of predictor; LASSO, least absolute shrinkage and selection operator (regression model); NO2, nitrogen dioxide; PM2:5,
PM with an aerodynamic diameter of ≤2:5 lm (fine particulate matter); RI, relative importance of predictors; SE, standard error of the coefficient; VIF, variance inflation factor (val-
ues close to 10 indicate collinearity).
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where environmental factors predicted just over one-third (36.6%)
of the indoor NO2 exposures and school- and classroom-originated
predictors explained 34.2% and 29.3%, respectively.

Discussion
The present study investigated factors affecting children exposures
to PM2:5, BC, and NO2 in inner-city schools in the northeast
United States. Despite the fact that our results address only urban
schools, exposure to PM2:5, BC, and NO2 were mostly low com-
pared with other studies performed in other U.S. areas (Hochstetler
et al. 2011; Zhang and Zhu, 2012; Raysoni et al. 2013; Polidori
et al. 2013; Bozlaker et al. 2017; Majd et al. 2019), Europe
(Fromme et al. 2007, 2008; Diapouli et al. 2008; Stranger et al.

2008; Wichmann et al. 2010; Buonanno et al. 2013; Rivas et al.
2014; Jovanović et al. 2014; Chatzidiakou et al. 2015a, 2015b;
Rosbach et al. 2016; Paunescu et al. 2017; Broekstra et al. 2019;
Branco et al. 2019), China (Che et al. 2021; Zhou et al. 2020),
Korea (Jeong and Park, 2017), India (Chithra and Nagendra,
2012),Malaysia (Mohd Isa et al. 2020), Brazil (Portela et al. 2021),
and Kuwait (Al-Hemoud et al. 2017). Table 3 lists similar studies
across the world and refers to determinants influencing classroom
exposures to these pollutants.

Our results showed that outdoor concentrations were an im-
portant factor with significant impacts on indoor exposure lev-
els, which is in agreement with the majority of the studies in
Table 3, where the most critical factor influencing classroom
exposures was infiltration of outdoor air pollution. Seasonality

Table 3. Indoor PM2:5, BC, and NO2 concentrations and possible influencing factors from various schools across the world.

Study Location Schools (area)

Concentrations (lg=m3)

Ventilation system Influencing factorsPM2:5 BC NO2

This study Northeastern USA 74 (urban) 5.7 0.6 11.5 Mixed Infiltration, ventilation, seasonality,
number/location of windows, clean-
ing frequency, age of building, num-
ber of students, proximity to
cafeteria, furnace condition

Majd et al. 2019 Baltimore, Maryland,
USA

16 (urban) 7.2 — 28.7 Mainly mechanical Infiltration, seasonality, proximity to
road, classroom level

Hochstetler et al. 2011 Ohio, USA 4 (urban) 15.6 0.26 — Natural Cafeteria, gym, indoor dust resuspen-
sion, open windows and doors

Zhang and Zhu, 2012 Texas, USA 1 (urban) 4.3 — — — Heaters, food-related activities, cleaning,
painting, ventilation

Bozlaker et al. 2017 Texas, USA 1 (urban) 3.2 — — Mechanical Infiltration, ventilation
Raysoni et al. 2013 Texas, USA 3 (urban) 10.6 0.28 7.9 Mechanical Infiltration, air exchange rate, building

tightness, indoor dust resuspension
Polidori et al. 2013 Los Angeles, California,

USA
3 (urban) 6.6 3.05 — Mechanical Indoor HEPA filters effectiveness

Rivas et al. 2014 Barcelona, Spain 39 (urban) 37 1.3 30 Natural Infiltration, sand-filled playgrounds,
cooking, chalk, proximity to road

Branco et al. 2019 Portugal 8 37.6 — 47.4 Natural Seasonality, private/public, flooring
material, indoor background dust

Stranger et al. 2008 Antwerp, Belgium 11 (urban) 59 0.4 73 Natural PM2:5: indoor dust resuspension, carpets,
BC, and NO2: seasonality, air
exchange, deposition velocity

Rosbach et al. 2016 Northeastern
Netherlands

17 (urban) 17.4 — 19 — Ventilation

Buonanno et al. 2013 Cassino, Italy 3 (urban) — 13.9 — Natural Local traffic
Wichmann et al. 2010 Stockholm, Sweden 6 (urban/suburban) 8.1 0.7 17.3 Mechanical PM2:5: indoor sources BC and NO2:

infiltration factors ventilation type
and air exchange rate

Chatzidiakou et al. 2015a,
2015b

London, UK 3 (urban) 36 — 25 Natural Heating, infiltration, proximity to road

Fromme et al. 2007; 2008 Munich, Germany 64 30.5 2.6 — Natural Indoor temperature and RH, classroom
size, classroom level, occupancy

Diapouli et al. 2008 Athens, Greece 7 (urban) 82 — — — Infiltration, carpet floor, room size
Broekstra et al. 2019 Berlin, Germany 10 7.5 — 10.6 — Infiltration, traffic

London, UK 6 2.2 — 17.8 — Infiltration, ventilation
Madrid, Spain 12 3.4 — 27.3 — Infiltration, traffic
Paris, France 6 6.3 — 21.3 — Infiltration, road proximity
Sofia, Bulgaria 8 23.2 — 16.4 — Outdoor air pollution

Jovanović et al. 2014 Serbia 1 43.56 — 15 Natural Ventilation, carpet floor, window
condition

Paunescu et al. 2017 Paris, France Urban — 1.54 — — Infiltration, time of day, window
opening

Che et al. 2021 Hong Kong, China 32 (urban) 23 — 47.8 Natural and
mechanical

Infiltration, room type, occupancy, use
of blackboard, flooring material

Zhou et al. 2020 Chengdu, China Urban — 3.6 — — Background levels, seasonality,
meteorology

Jeong and Park, 2017 Seoul, Korea Urban — 1.93 — — Infiltration, proximity to local sources
Chithra and Nagendra

(2012)
Chennai, India 1 (urban) 46.5 — — Natural Infiltration, outdoor meteorology, traffic

Mohd Isa et al. 2020 Selangor, Malaysia 8 (urban) 24.6 — 32 — Infiltration, ventilation
Portela et al. 2021 Canoas, Brazil 1 (urban) — 3.1 — — Infiltration and local traffic
Al-Hemoud et al. 2017 Kuwait 7 (urban) — — 30.2 Mechanical Seasonality, indoor burners

Note:—, not applicable; BC, black carbon; HEPA, high-efficiency particulate air (filter); NO2, nitrogen dioxide; PM2:5, PM with an aerodynamic diameter of ≤2:5 lm (fine particulate matter).
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and meteorological parameters (temperature and wind speed)
were also important factors. Seasonality was shown to be asso-
ciated with the indoor concentrations of all examined pollu-
tants. Higher BC and NO2 concentrations were observed in
winter, which is consistent with the findings of the previous
studies (Blondeau et al. 2005; Fromme et al. 2007; Goyal and
Khare, 2009; Majd et al. 2019). Our results showed a positive
association of temperature with indoor PM2:5 concentrations
presumably as a result of enhanced secondary aerosols, similar
to previous studies (Brani�s et al. 2005; Goyal and Khare, 2009;
Majd et al. 2019), and inverse associations with BC and NO2.
The negative association between temperature and BC and NO2
in urban environments during cold season likely relates to the
efficacy of the vehicle after-treatment systems and the propor-
tion of vehicles running under normal operating temperature vs.
cold start conditions (Matthaios et al. 2019). Wind speed was
also significantly inversely associated with all the pollutants.
Low wind speeds translate to poor dispersion conditions in the
atmosphere, which in turn leads to accumulation of pollution in
the lower troposphere near the surface (Matthaios et al. 2017).
This results into elevated outdoor levels and thus elevated
indoor exposure.

The analysis also showed that school-related factors important
to exposure included frequency of furnace servicing and building
characteristics linked to the air tightness of the building envelope
such as the presence of a basement, construction age, and whether
the school was attached or detached from other buildings. Building
envelope characteristics differently influence each pollutant. Year
of construction was negatively associated with PM2:5 exposures.
Older buildings are “leaky,” and they tend to have more cracks and
openings, which favor the infiltration of outdoor particles (Breen
et al. 2014). Similar results were found by (Che et al. 2021), where
PM2:5 concentrations in schools >40 years of age were, on aver-
age, 3:5 lg=m3 greater than those built within 20 y. As demon-
strated by our analysis, attached buildings were associated with
greater BC levels, whereas detached buildings were associated
with elevated NO2 levels. Detached schools were mostly located
near major roads and, therefore, were more impacted by traffic-
related pollutants such as NO2. The importance of heating that was
an important factor for indoor BC levels was also reported in simi-
lar inner-city schools study in Baltimore (Majd et al. 2019) and
Texas (Zhang and Zhu 2012), as well as in other studies in England
(Chatzidiakou et al. 2015a, 2015b) and Portugal (Branco et al.
2019). Our results also showed significant associations of PM2:5
andNO2 with low annual income, which is in agreement with stud-
ies that highlighted the importance of socioeconomic disparities
with air pollution exposure (Hajat et al. 2015). The association of
NO2 with a greater number of classrooms and a greater number of
students is another indication of disparity given that in theU.S. big-
ger schools with more students tend to be located in poor neighbor-
hoods that are more influenced by traffic-related pollutants
(Kravitz-Wirtz et al. 2018).

Classroom-related factors important for exposure included
classroom level floor, frequency of cleaning, number of windows,
and window location (i.e., facing bus area). Higher classroom floor
level was negatively associated with NO2 and PM2:5 concentra-
tions. Classrooms located at lower floors are closer to nearby out-
door emission sources and may be influenced by buses during
drop-off and pick-up times (Guo et al. 2010).Measurements of ver-
tical profiles of PM2:5 and NO2 in city-center buildings showed
that PM2:5 had a decline of 11%with height, whereas traffic-related
pollutants such as NO2 showed a much stronger decline of 74%
(Sajani et al. 2018). This supports our findings of significant nega-
tive associations between PM2:5 and NO2 and classroom floor.
Furthermore, the observed positive association between exposures

and the number of open windows in a classroom is related to the
larger penetration of outdoor pollutants. We found that classrooms
with windows facing the bus area influence indoor exposures of all
pollutants. In agreement with our results, PM2:5 in schools during
drop-off hours were found to be two to three times greater (Kumar
et al. 2020), whereas schools with a greater number of buses were
also found to have greater PM2:5 and BC concentrations indoors
(Hochstetler et al. 2011). The school cafeteria was found to have a
positive association with PM2:5 classroom exposures that is in
agreement with a study in Ohio that reported elevated PM2:5 con-
centrations during the cafeteria opening hours (Hochstetler et al.
2011). Despite knowing that indoor cooking is an important source
for PM2:5, BC, and NO2, in our study only 10.8% of the schools did
active cooking in the premises and for the majority of the schools
the food was cooked and delivered by catering services.
Occupancy can impact PM levels in classrooms, especially the
coarse fraction (Branco et al. 2019; Che et al. 2021), owing to the
resuspension of particles (Fromme et al. 2007); however, in this
study we could not assess occupancy directly given that the meas-
urements were weeklong and included both occupancy and nonoc-
cupancy periods.

Overall, LASSO mixed-effects regression models for PM2:5,
BC, and NO2 revealed different influences from multiple factors
that are related to both outdoor and indoor conditions. Indoor fac-
tors associated with exposures further varied with school and
classroom characteristics, revealing the complexity of the prob-
lem and the additional research that is needed to determine the
causality of these relationships. Our study also has a few limita-
tions: The classroom exposures reported here might not be repre-
sentative for long-term measurements of children’s exposure
inside schools given that they were not continuous over the 10-y
period. Furthermore, the exposures might not be representative
for other inner-city schools because each urban agglomeration
has different sources and each school has different management
policies, building characteristics, ventilation practices, and indoor
activities that may not be found elsewhere. The integrated sam-
ples included both occupancy and nonoccupancy periods during
the week; thus, the measured exposures may be lower than those
experienced when the children are in school. Road proximity,
which can often be a traffic-related exposure factor (Huang et al.
2018), was not included in the analysis. Despite including build-
ing age in our analysis, which has an effect of air tightness of the
building, we did not account for any building improvements in
the schools, which have been shown to improve the overall
indoor air quality (Majd et al. 2019).

Implications
This work examined predictors of classroom exposures to air pol-
lutants in inner-city schools using an adaptive LASSO mixed-
effects regression method. The results obtained were based on an
extensive set of field measurements performed for indoor and
outdoor concentrations of particle and gaseous air pollutants in
309 classrooms at 74 schools and information collected via a
combination of questionnaires, inspection, and interviews with
the staff. Such measurements provide a basis for the comprehen-
sive quantification of exposure impacts from multiple factors and
add to the robustness of the estimates. The relatively low PM2:5,
BC, and NO2 concentrations measured inside schools may repre-
sent a partial ongoing success story for environmental equity for
these urban schools that have had to deal with the many structural
indoor and outdoor challenges of old school buildings located in
poor neighborhoods, where they are often surrounded by city
traffic and multiple other potentially adverse environmental expo-
sures. A policy of delivering meals from a central source may
have also decreased indoor kitchen-related exposures, whereas
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state- and city-wide campaigns to reduce bus and private cars
idling around schools and programs to retrofit school buses may
have also contributed to that direction. Despite the low indoor
PM2:5 levels, past studies of children as well as adults have
reported adverse health effects related to outdoor PM2:5 exposure
at concentrations below current national standards (Rice et al.
2016, 2018; Di et al. 2017). It is therefore important to raise
awareness of indoor air quality issues among school administra-
tors, engineers, and policymakers.

In LASSO models, a broad range of exposure determinants at
the outdoor environment, school, and room level were examined,
and several factors were found to contribute significantly to
indoor pollutant concentration. The most important predictor
associated with indoor exposure in the models was outdoor air
pollution, accounting for 53.9%, 63.4%, and 34.1% of the PM2:5,
BC, and NO2 variability, respectively. This result underpins the
fact that stricter policies aiming at reducing outdoor air pollution
emissions, such as the Clean Air Act standards, are still the most
effective way to reduce children’s exposure to air pollution in
schools. Given that outdoor pollution penetrates indoors, local
city-wide or neighborhood guidelines and initiatives (e.g., retro-
fitting buses; traffic reduction or rerouting) can further reduce
outdoor air pollution exposures, hence improving indoor air qual-
ity and children’s health.

Further improvement of the potentially reparable predictors
of indoor school pollution that we defined in the present study
may further improve health for students. School-based predictors
included furnace servicing, the presence of a basement, annual
income, building type, building year of construction, number of
classrooms, number of students, and type of ventilation and
explained 18.6%, 26.1%, and 34.2% of PM2:5, BC, and NO2 lev-
els, whereas classroom-based predictors included classroom floor
level, classroom proximity to the cafeteria, number of windows,
frequency of classroom cleaning, and windows facing the bus
area and explained 24.0%, 4.2%, and 29.3% of PM2:5, BC, and
NO2 concentrations, respectively. These findings can provide key
information regarding controllable exposure factors in managing
schoolchildren’s exposure and suggest that some reparable fac-
tors may contribute to the reduction of indoor school pollution
exposures in the U.S. urban setting. Servicing of furnaces, the
outdoor location of school bus parking, increasing the airtight-
ness of the building envelope, and building cleaning are examples
of factors that influenced indoor classroom PM2:5, BC, and NO2
levels and are ameliorable to change to reduce exposure for
inner-city schools and schools located in poor neighborhoods.

Future targeted interventions should consider the use of me-
chanical ventilation, with attention to optimal air exchange rates
in schools and the application of appropriate filters in the heating,
ventilation, and air conditioning systems that can effectively
reduce the contribution of outdoor air pollution indoors. In addi-
tion, further work should assess whether indoor classroom pollu-
tion is improved when school classrooms face parks or other
green areas and when schoolyards overlook the calmest streets,
instead of the busiest road around the school.
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